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ML Performance is Important

https://uxdesign.cc » apples-faceid-and-magnified-failur...

How a 2-second lag magnifies Apple's FacelD effects of failure

29 Sept 2018 — When FacelD fails it doesn't just show the passcode, it waits for what seems

like forever (2 full seconds) before it shows you the passcode ...




ML Performance is Important
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Al and ML could save the planet - or add more fuel

to the climate fir A single V100 GPU can consume between 250 and 300

Staggering amount of computa 115 |f we assume 250 watts, then 512 V100 GPUS
consumes 128,000 watts, or 128 kilowatts (kW). Running for
nine days means the MegatronLM's training cost 27,648
kilowatt hours (kWh).

The average household uses 10,649 kWh annually,




Convolutions: the core of ML
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CNNs: Performance Analysis
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Energy consumption of neural net on simulated systolic array, broken into components:
RF = Register File data access, Buffer = scratchpad (on-chip memory), Array = systolic
array communication, ALU = arithmetic cost. (Yang et al. ASPLOS ’20)



Reduce
communication for
better performance!



Sample speedups: communication avoidance

Our Approach

Doing the same operation, different o#CCr
- Upto faster for 2.5D dense matmul on 64K core IBM BG/P

- Upto faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
« Up to faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
- Upto faster for direct N-body on 32K core IBM BG/P

Mathematically identical answer, but different algorithm
- Up to faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU
- Upto faster for symeig(band A) on 10 core Intel Westmere
« Up to faster for BICGStab (MiniGMG bottom solver) on 24K core Cray XE6
- Upto faster for coordinate descent LASSO on 3K core Cray XC30

Different algorithm, different approximate answer
- Upto faster for SVM on a 1536 core Cray XC30
« Up to faster for ImageNet training on 2K Intel KNL nodes



The Communication Model
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The Communication Model




The Communication Model: Parallel Edition




How do we reduce
commuhnication?



Tiling

Split tensors into blocks to reduce communication costs.
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Tiling

Split tensors into blocks to reduce communication costs.

for in [0..M/Bn):

for in [0..Bm):
for k in [0..K):
for nin [0..N):

C[m,n] += A[m,k]B[k,n]
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Tiling

Split tensors into blocks to reduce communication costs.
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Tiling

Split tensors into blocks to reduce communication costs.

for in [0..M/Bn):

for in [0..K/Bk):
for in [0..N/Bn):
for in [0..Bm):

for kin in [0..Bk):
for nin in [0..Bn):
= Bm +
= Bk +
= Bn +

C[m,n] += A[m,k]B[k,n]




Tiling




Finding Tilings...

...1s difficult.

Results often for either specific hardware models (e.g. Huang et al. ISCA °21, needs
cost function + HW params), or reliant on expensive per-architecture autotuning (e.g.

ATLAS).
Previous theoretical methods prove and attain asymptotic lower bounds but are
difficult to apply in practice

Example: cubic tiles
are asymptotically
optimal for matmul, but
rectangular tiles give a
better constant.




For Convolutions...

Even more complicated loop nest to tile: 7-D, now with scaling factors!

batch S|ze input channels output channels output dimensions

for\ , mrangeO{BCKWHRS})

Outlk, h, w, b] += Image[r+w s+h , C, b]* Filter[k, r, s, C]




Intuition: maximize tile size with optimization



As an optimization problem...

‘bbb subj. to:

r-r—§s-S§

maximize the tile size: b,b.b,b, b, b

bbb bbb + bbb b, + bbb, +b)b,+ bbb <M

r-s—s r

(plus constraints on tile sizes being smaller than program sizes and some extra
technical constraints)



Relax the problem: assume equal scratchpad sizes for each tensor tile:

maximize the tile size: b,b.b,.b, b,b'b’b.b. subj. to:

r—s—S

b bb'b'bb" + bbb b, + bbb, +b)b,+b)b'b! <M

r-r—§-8§ r



Relax the problem: assume equal scratchpad sizes for each tensor tile:
maximize the tile size: b,b.b,.b, b,b'b’b.b, subj. to:
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maximize the tile size: b,b.b.b, b,b'b’b'b!

M

b.b,b,b/bb] < —

b,bb,by

byb.(b,, + b.)(b, + bbb

A
W[ w|x »

IA

subj. to:
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maximize the tile sizes, (  byb,byb, bb/bIbb!  subj. to:

logy(b.bbib/bb)) < logy =

" M

o\ M
gﬁa\mo logy,(b,byb,,by,) < logy, 3
M

log,,(b,b)(b,, + b,)(b, + bbb ) < log,, ?



T

maximize ¢ x subj. to Ax < L, where

CT=[1 oo 1]
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How good are these
tilings?



Theoretical comparison:

Normalized Communication Volume for ResNet50
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naive layer 1 — fft layer 1 —— blocking layer 1
* naive layer 2 --- fftlayer 2 --- blocking layer 2
im2col layer 1 win layer1 ~ —— comm bound layer 1
- im2col layer 2 win layer2  ---- comm bound layer 2

Theoretical analysis:
requires less computation
than:

- alternative kernels (Winograd, )

- for sufficiently small problems (or
sufficiently large memory sizes), all
matmul based models (including )

: , by over an order of magnitude

(Example for Resnet50 layers 1 and 2, mixed
Spoiler alert: this is a
communication lower bound. More on
this in 10 minutes...



Theoretical comparison:

Normalized Communication Volume for Parallel ResNet50
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Even greater impact for parallel case
(‘smaller’ problem size)!



How well does it work
In practice?



Real HW is complicated

Hardware Intrinsic Mapping

o perator ) Hardware
intrinsic
s L fori=Ln
fori=1,8 S Stmtl (i)
forj=1,8 . 8(x. V. ¢ fori=ln
for k=1,8 ] [ :

DRAM

Data .
Fetch : Halide

fori=Ln » for i=min,max
for j=1,n/4 parallelt,e for j=1,n/4
] i vec (Stmt(ij))

1013
possibilities for
mapping space
for one layer
alone!

e windows

Polyhedral

Parallelization /
Vectorization

O>OrO>O  Nested Polyhedral



HW-specific quirks



Benchmark platform

e Cycle-accurate simulation of a . .
GEMMINI (Genc et al DAC 21 ‘ ’ F S M
best paper) systolic I re I
accelerator connected to a a
RISCV Rocket core H

e Accurate DRAM model
simulates on/off chip memory
access.



HW-specific quirks

@ Separate buffers: accumulators

Gemmini Accelerator

for output and scratchpad for

: :
inputs and weights, cannot be ————
shared o0
)L Systolic ][

DL Aray ][]

_ _ _ OLuULJdo

& Replace M/3in constraints with Oooodd

sizes of separate buffers, and use
sigmoidal optimization to handle
“sum of tile < M” constraints.




HW-specific quirks

@ Mixed precision: scratchpad
IS 16-bit, accumulator is 32-bit

Gemmini Accelerator

_ |
but writes to DRAM at 16-bit - OO0000
cannot tile along reduction axes. - O “soic

. . 1L Array ][]
& Scale memory sizes in It

HIEIEIEIE
constraints by 1/word size (our

theoretical results apply to mixed
precision - more on that in a bit)




HW-specific quirks

@ Double-buffering: use half of

buffer to work while other half is o pouble-bullering example
receiving data from memory to

interleave computation and

communication. e _/

(about to be output)

s& Halve memory size when
computing tile sizes.


https://xerxes.cs.manchester.ac.uk/comp251/kb/images/double_buffering.png

HW-specific quirks

@ hot-start: begin computing
output pixels when just enough
iInputs have been received
(instead of waiting for whole tile
to be loaded)

s» Lower-order term.



Benchmark results

Significant perf boost and reduction in
communication over vendor library for
resnet convi (large filter, where our
algorithm gives most benefit), smaller one
for conv2.

(o]

Resnet50 conv performance on GEMMINI
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GEMMINI library; as a result our algorithm .
(which does not account for things like
alignment) performs slightly worse in cycles
despite doing better in communication.
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Ongoing work: integration into compiler framework to allow HW-specific optimizations.



Can we do better?
(No™)



Communication Lower Bounds

Strategy: Derive new lower bounds on communication volume
over all possible reorderings of the algorithm.

Our tiling attains the lower bound (proof in paper).



Proof Technique: the Loomis-Whitney Inequality

Lemma: Given a finite set V C Z°
and projections V, Vp, V- onto each
coordinate plane, the volume of V'is PRCECN

at most | V| s\/|VA||VB||VC|.

Represent each arithmetic operation . .

as a point in iteration domain V' , with o o
V4, Vg, V- representing array
accesses



Proof Sketch: Matmul Communication Bound

Communication lower bound for multiplying two n X n matrices C = AB:
1. Split code into L segments, each doing M communications

2. Each segment has access to 2M elements of A, B, and C

3. Accesses are projections, so L-W Inequality: Number of operations per

segment </ 8M°

4. Need to do 1> operations, so need n>/\/ 8M?> segments
5. M loads per segment, so need n°/1/8M communications

Smith et al. optimized the constant using Lagrange multipliers.



Generalizations...

e Matrix inversion, QR decomposition, LU decomposition, and other dense
linear algebra (Christ et al. ’13)

e More complicated loop nests with affine array accesses (Demmel and
Rusciano ’16)

e Different architectures (multilayer caches, parallel architectures)

e Sparse operations

e Mixed-precision data

Our contribution: a new generalization to CNNs including a constant factor and
capable of handling mixed precision and parallel architectures.



Loomis-Whitney to Holder-Brascamp-Lieb

Let qu . 7% - 7% be group homomorphisms and s € [0,1]™. Then if for all
subgroups H < Z¢

rank(H) < Zm: S; rank(gbj(H )
j=1

Then for all nonempty finite V C Z:

vi<[igv1

J=1



Proving HBL

e Standard proof: inductive argument involving careful decomposition along the
kernels of the homomorphisms.

e Tao et al, "The Brascamp-Lieb Inequalities: Finiteness, Structure and
Extremals" proves HBL using heat flow:
o (Gaussians maximize the inequality
o Show monotonicity in the inequality along a heat flow



Using HBL

¢r(iq, 1o, i3, ig, 15, ig, i7) = (i1, Ig, ig + Oyig, i7 + Opis5)

¢r (i1, iz, i3, i4, I5, I6, i7) = (i2, 13, i6, i7)

do (i, iz, i3, 14, is, i6, i7) = (i1, i3, i4, i5)




Constraint
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1 < sp+sp
1 <sp+sp
1 <sp+sp
1 <s7+SsF
1 £sFp+5so
2 < Sp+Sp+5S0
1 <sr+5sp
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Our result &

Main Theorem: The number of words X communicated by a convolution which
does G operations, uses filters of size wy X hp, has strides o,,, 6;, and runs with
a fast memory of size M is:

9G 2G, /0,0
X > max

— M — 2M, | Image | + | Filter | + | Out |
AM

, \/ WFhFM

52



Parallel results

Theorem: The number of words X communicated by a convolution which does G
operations, uses filters of size wy X hy, has strides o,,, ;, and runs on a
distributed architecture with P processors with memory size M is:

OG 2G 0,,0p,
X>max{ — — M, —2M
4PM P\/wgheM




Further work

e Designing hardware accelerators to
take advantage of optimal CNN
tilings

e Optimizations for GPUs and other
parallel architectures DRAM

e C(losing the gap between current
CNN algorithms and lower bounds

e Integrate into compiler framework

(EXO, Bernstein et al. PLDI ’22) to

allow easy HW-specific
optimizations.
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e Lower bounds using HBL: M. Christ, . Demmel et al. 2013, Communication
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convolutional neural nets.

e Communication-optimal matmul: T. Hoefler, G. Kwasniewski et al. 2019, Red-
blue pebbling revisited: Near optimal parallel matrix-matrix multiplication.
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Bound for Matrix Multiplication
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