
Avoiding Communication in
Convolutional Neural Networks
PASC 28 June 2022
Anthony ChenM, James DemmelB, Grace DinhB, Mason HaberleN, and Olga

HoltzB

M: University of Michigan
B: University of California, Berkeley
N: New York University

1

ML Performance is Important

2

ML Performance is Important

3

Convolutions: the core of ML

4

Image Source: Gurung, Paras Mani, Introduction to Convolutional Neural Network, Medium

CNNs: Performance Analysis

Energy consumption of neural net on simulated systolic array, broken into components:
RF = Register File data access, Buffer = scratchpad (on-chip memory), Array = systolic
array communication, ALU = arithmetic cost. (Yang et al. ASPLOS ’20)

5

Image Source: Yang et al. ASPLOS ’20, Interstellar: Using Halide's Scheduling Language to Analyze DNN Accelerators

Reduce
communication for
better performance!

6

Sample speedups: communication avoidance

Doing the same operation, different order:
• Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P
• Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
• Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
• Up to 11.8x faster for direct N-body on 32K core IBM BG/P

Mathematically identical answer, but different algorithm
• Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU
• Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
• Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 24K core Cray XE6
• Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

Different algorithm, different approximate answer
• Up to 16x faster for SVM on a 1536 core Cray XC30
• Up to 135x faster for ImageNet training on 2K Intel KNL nodes

7

Our Approach

The Communication Model

8

Processor
(CPU, accelerator,

etc.) memory
(arbitrarily large)

The Communication Model

9

Processor
(CPU, accelerator,

etc.) Slow memory
(arbitrarily large)

The Communication Model

10

Slow memory
(arbitrarily large)

Fast memory
size: M words

(scratchpad,
cache)

Communication:
of words

movedMinimize this

Processor
(CPU, accelerator, etc.)

The Communication Model

11
Global Interconnect

C
om

m
un

ic
at

io
n:

of

 w
or

ds
 m

ov
ed

Processor
(CPU, accelerator,

etc.)

Fast memory
size: M words

(scratchpad,

The Communication Model: Parallel Edition

12
Global Interconnect

C
om

m
un

ic
at

io
n:

of

 w
or

ds
 m

ov
ed

Processor
(CPU, accelerator,

etc.)

Fast memory
size: M words

(scratchpad,

C
om

m
un

ic
at

io
n:

of

 w
or

ds
 m

ov
ed

Processor
(CPU, accelerator,

etc.)

Fast memory
size: M words

(scratchpad,

C
om

m
un

ic
at

io
n:

of

 w
or

ds
 m

ov
ed

Processor
(CPU, accelerator,

etc.)

Fast memory
size: M words

(scratchpad,

C
om

m
un

ic
at

io
n:

of

 w
or

ds
 m

ov
ed

Processor
(CPU, accelerator,

etc.)

Fast memory
size: M words

(scratchpad,

How do we reduce
communication?

13

Tiling

Split tensors into blocks to reduce communication costs.

14Image Source: Nugteren, Cedric, OpenCL SGEMM tuning for Kepler, 2014

Tiling

Split tensors into blocks to reduce communication costs.

15

for m in [0..M):
 for k in [0..K):
 for n in [0..N):
 C[m,n] += A[m,k]B[k,n]

Tiling

Split tensors into blocks to reduce communication costs.

16

for mout in [0..M/Bm):
 for min in [0..Bm):
 for k in [0..K):
 for n in [0..N):
 C[m,n] += A[m,k]B[k,n]

Tiling

Split tensors into blocks to reduce communication costs.

17

for mout in [0..M/Bm):
 for min in [0..Bm):
 for k in [0..K):
 for n in [0..N):
 m = moutBm + min
 C[m,n] += A[m,k]B[k,n]

Tiling

Split tensors into blocks to reduce communication costs.

18

for mout in [0..M/Bm):
 for k in [0..K):
 for n in [0..N):
 for min in [0..Bm):
 m = moutBm + min
 C[m,n] += A[m,k]B[k,n]

Tiling

Split tensors into blocks to reduce communication costs.

19

for mout in [0..M/Bm):
 for kout in [0..M/Bk):
 for n in [0..N):
 for min in [0..Bm):
 for kin in [0..Bk):
 m = moutBm + min
 k = koutBk + kin
 C[m,n] += A[m,k]B[k,n]

Tiling

Split tensors into blocks to reduce communication costs.

20

for mout in [0..M/Bm):
 for kout in [0..K/Bk):
 for nout in [0..N/Bn):
 for min in [0..Bm):
 for kin in [0..Bk):
 for nin in [0..Bn):
 m = moutBm + min
 k = koutBk + kin
 n = noutBn + nin
 C[m,n] += A[m,k]B[k,n]

Tiling

Split tensors into blocks to reduce communication costs.

21

for mout in [0..M/Bm):
 for kout in [0..K/Bk):
 for nout in [0..N/Bn):
 for min in [0..Bm):
 for kin in [0..Bk):
 for nin in [0..Bn):
 m = moutBm + min
 k = koutBk + kin
 n = noutBn + nin
 C[m,n] += A[m,k]B[k,n]

🤔 How do we find good tiles

Finding Tilings…

…is difficult.
Results often for either specific hardware models (e.g. Huang et al. ISCA ’21, needs
cost function + HW params), or reliant on expensive per-architecture autotuning (e.g.
ATLAS).
Previous theoretical methods prove and attain asymptotic lower bounds but are
difficult to apply in practice

22

Example: cubic tiles
are asymptotically
optimal for matmul, but
rectangular tiles give a
better constant.

Image source: T. Smith et al. (Feb 2019). A Tight I/O Lower Bound for Matrix Multiplication

For Convolutions…

Even more complicated loop nest to tile: 7-D, now with scaling factors!

23

for (b, c, k, w, h, r, s) in range(0,{B, C, K, W, H, R, S}):
 Out[k, h, w, b] += Image[r+wσr, s+hσh, c, b]* Filter[k, r, s, c]

 batch size input channels output channels output dimensions filter dimensions

 strides

Intuition: maximize tile size with optimization

24

As an optimization problem…

maximize the tile size: subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s

25

bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼sbbbkbwbhbcbkb′￼rb′￼′￼r b′￼sb′￼′￼s + + ≤ M

(plus constraints on tile sizes being smaller than program sizes and some extra
technical constraints)

maximize the tile size: subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s

26

bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼sbbbkbwbhbcbkb′￼rb′￼′￼r b′￼sb′￼′￼s + + ≤ M

Relax the problem: assume equal scratchpad sizes for each tensor tile:

maximize the tile size: subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s

27

bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼s

bbbkbwbh

bcbkb′￼rb′￼′￼r b′￼sb′￼′￼s ≤
M
3

≤
M
3

≤
M
3

Constrain
block sizes ≤

Relax the problem: assume equal scratchpad sizes for each tensor tile:

maximize the tile size: subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s

28

bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼s

bbbkbwbh

bcbkb′￼rb′￼′￼r b′￼sb′￼′￼s ≤

nonlinear 😭

M
3

≤ M
3

≤ M
3

maximize the tile size: subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s

29

bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼s

bbbkbwbh

bcbkb′￼rb′￼′￼r b′￼sb′￼′￼s

logM(

logM(

logM(

logM(

≤ M
3

≤ M
3

≤ M
3

)

)

)

logM

logM

logM

)

“almost”

Multiply out and relax again by replacing constraint with M/12 ≥ each of 4 product terms
individually

30

maximize subj. to , wherecT x Ax ≤ L

cT = [1 ⋯ 1]

A =

1 0 1 1 1 0 0 0 0
0 1 1 0 0 1 1 1 1
1 1 0 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1
1 1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 1 1

bT = 1 − [logM 3 logM 3 logM 12 logM 12 logM 12 logM 12]

How good are these
tilings?

31

Theoretical comparison:

32

Theoretical analysis: tiled direct
convolution requires less computation
than:
• alternative kernels (Winograd, FFT)
• for sufficiently small problems (or

sufficiently large memory sizes), all
matmul based models (including im2col)

• naive, by over an order of magnitude

(Example for Resnet50 layers 1 and 2, mixed
precision, input stride 1, output stride 2, 1k
batches)

Spoiler alert: this is a
communication lower bound. More on

this in 10 minutes…

Theoretical comparison:

33

Even greater impact for parallel case
(‘smaller’ problem size)!

How well does it work
in practice?

34

35
Image source: The Deep Learning Compiler: A Comprehensive Survey (Li et. al ‘20),
https://arxiv.org/abs/2002.03794

Real HW is complicated

1013
possibilities for
mapping space
for one layer
alone!

Can our tilin
g be tied into this? (spoiler

alert: yes)

HW-specific quirks

36

Benchmark platform

● Cycle-accurate simulation of a
GEMMINI (Genc et al DAC ’21
best paper) systolic
accelerator connected to a a
RISCV Rocket core

● Accurate DRAM model
simulates on/off chip memory
access.

37

FireSim

HW-specific quirks

🧐 Separate buffers: accumulators
for output and scratchpad for
inputs and weights, cannot be
shared

🧙 Replace M/3 in constraints with
sizes of separate buffers, and use
sigmoidal optimization to handle
“sum of tile < M” constraints.

38

HW-specific quirks

🧐 Mixed precision: scratchpad
is 16-bit, accumulator is 32-bit
but writes to DRAM at 16-bit -
cannot tile along reduction axes.

🧙 Scale memory sizes in
constraints by 1/word size (our
theoretical results apply to mixed
precision - more on that in a bit)

39

HW-specific quirks

🧐 Double-buffering: use half of
buffer to work while other half is
receiving data from memory to
interleave computation and
communication.

🧙 Halve memory size when
computing tile sizes.

40

Image source: U. Manchester COMP25111, https://xerxes.cs.manchester.ac.uk/comp251/kb/images/double_buffering.png

https://xerxes.cs.manchester.ac.uk/comp251/kb/images/double_buffering.png

HW-specific quirks

🧐 hot-start: begin computing
output pixels when just enough
inputs have been received
(instead of waiting for whole tile
to be loaded)

🧙 Lower-order term.

41

Benchmark results

Significant perf boost and reduction in
communication over vendor library for
resnet conv1 (large filter, where our
algorithm gives most benefit), smaller one
for conv2.

Frame conv3-5 not memory-bound in
GEMMINI library; as a result our algorithm
(which does not account for things like
alignment) performs slightly worse in cycles
despite doing better in communication.

42Ongoing work: integration into compiler framework to allow HW-specific optimizations.

Can we do better?
(No*)

43

Communication Lower Bounds

Strategy: Derive new lower bounds on communication volume
over all possible reorderings of the algorithm.

Our tiling attains the lower bound (proof in paper).

44

Proof Technique: the Loomis-Whitney Inequality

Lemma: Given a finite set
and projections onto each
coordinate plane, the volume of is

at most .

Represent each arithmetic operation
as a point in iteration domain , with

 representing array
accesses

V ⊂ ℤ3

VA, VB, VC
V

|V | ≤ |VA | |VB | |VC |

V
VA, VB, VC

45

Proof Sketch: Matmul Communication Bound

Communication lower bound for multiplying two matrices :n × n C = AB

46

1. Split code into segments, each doing communicationsL M
2. Each segment has access to elements of , and 2M A, B C
3. Accesses are projections, so L-W Inequality: Number of operations per
segment ≤ 8M3

4. Need to do operations, so need segments n3 n3/ 8M3

5. loads per segment, so need communications M n3/ 8M

Smith et al. optimized the constant using Lagrange multipliers.

Generalizations…

● Matrix inversion, QR decomposition, LU decomposition, and other dense
linear algebra (Christ et al. ’13)

● More complicated loop nests with affine array accesses (Demmel and
Rusciano ’16)

● Different architectures (multilayer caches, parallel architectures)
● Sparse operations
● Mixed-precision data

Our contribution: a new generalization to CNNs including a constant factor and
capable of handling mixed precision and parallel architectures.

47

Loomis-Whitney to Hölder-Brascamp-Lieb

Let be group homomorphisms and . Then if for all
subgroups

ϕj : ℤd → ℤdj s ∈ [0,1]m

H ≤ ℤd

48

Then for all nonempty finite :V ⊆ ℤd

rank(H) ≤
m

∑
j=1

sj rank(ϕj(H))

|V | ≤
m

∏
j=1

|ϕj(V) |sj

Proving HBL

49

● Standard proof: inductive argument involving careful decomposition along the
kernels of the homomorphisms. 

● Tao et al, "The Brascamp-Lieb Inequalities: Finiteness, Structure and
Extremals" proves HBL using heat flow:
○ Gaussians maximize the inequality
○ Show monotonicity in the inequality along a heat flow

Using HBL

50

51

Using HBL

Our result 😎

Main Theorem: The number of words communicated by a convolution which
does operations, uses filters of size , has strides and runs with
a fast memory of size is:

X
G wF × hF σw, σh

M

52

X ≥ max { 9G
4M

− M,
2G σwσh

wFhFM
− 2M, | Image | + |Filter | + |Out |}

Attained (to within small factor) by

our tiling. Proof by LP duality!

Parallel results

Theorem: The number of words communicated by a convolution which does
operations, uses filters of size , has strides and runs on a
distributed architecture with processors with memory size is:

X G
wF × hF σw, σh

P M

53

X ≥ max { 9G
4PM

− M,
2G σwσh

P wFhFM
− 2M}

Further work

● Designing hardware accelerators to
take advantage of optimal CNN
tilings

● Optimizations for GPUs and other
parallel architectures

● Closing the gap between current
CNN algorithms and lower bounds

● Integrate into compiler framework
(EXO, Bernstein et al. PLDI ’22) to
allow easy HW-specific
optimizations.

54

Image Source: Chen et al., 2020, Communication Lower Bounds in Convolution Accelerators,, arXiv preprint

Selected references

● Online collection of papers: bebop.cs.berkeley.edu
● Survey: J. Demmel et al. 2014, Communication lower bounds and optimal

algorithms for numerical linear algebra.
● Lower bounds using HBL: M. Christ, J. Demmel et al. 2013, Communication

lower bounds and optimal algorithms for programs that reference arrays.
● CNN lower bounds: J. Demmel, G. Dinh 2018, Communication-optimal

convolutional neural nets.
● Communication-optimal matmul: T. Hoefler, G. Kwasniewski et al. 2019, Red-

blue pebbling revisited: Near optimal parallel matrix-matrix multiplication.
● Communication-optimal matmul: T. Smith et al. (Feb 2019). A Tight I/O Lower

Bound for Matrix Multiplication

55

http://bebop.cs.berkeley.edu

Thank you!

Scan above to read our paper…

…or come talk to us!

Anthony Chen
cygnari@umich.edu

Grace Dinh
gnd@berkeley.edu

Mason Haberle
mason.haberle@nyu.edu

