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ML Performance is Important
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ML Performance is Important
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Convolutions: the core of ML
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Image Source: Gurung, Paras Mani, Introduction to Convolutional Neural Network, Medium



CNNs: Performance Analysis

Energy consumption of neural net on simulated systolic array, broken into components:
RF = Register File data access, Buffer = scratchpad (on-chip memory), Array = systolic 
array communication, ALU = arithmetic cost. (Yang et al. ASPLOS ’20)
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Image Source: Yang et al. ASPLOS ’20, Interstellar: Using Halide's Scheduling Language to Analyze DNN Accelerators



Reduce 
communication for 
better performance!
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Sample speedups: communication avoidance

Doing the same operation, different order:
• Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P
• Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
• Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
• Up to 11.8x faster for direct N-body on 32K core IBM BG/P

Mathematically identical answer, but different algorithm
• Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU
• Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
• Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 24K core Cray XE6
• Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

Different algorithm, different approximate answer
• Up to 16x faster for SVM on a 1536 core Cray XC30
• Up to 135x faster for ImageNet training on 2K Intel KNL nodes
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Our Approach



The Communication Model
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The Communication Model
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The Communication Model
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The Communication Model: Parallel Edition
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How do we reduce 
communication?
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Tiling

Split tensors into blocks to reduce communication costs.

14Image Source: Nugteren, Cedric, OpenCL SGEMM tuning for Kepler, 2014



Tiling

Split tensors into blocks to reduce communication costs.
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for m in [0..M):
  for k in [0..K):
    for n in [0..N):
      C[m,n] += A[m,k]B[k,n]



Tiling

Split tensors into blocks to reduce communication costs.
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for mout in [0..M/Bm):
  for min in [0..Bm):
    for k in [0..K):
      for n in [0..N):
        C[m,n] += A[m,k]B[k,n]



Tiling

Split tensors into blocks to reduce communication costs.
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for mout in [0..M/Bm):
  for min in [0..Bm):
    for k in [0..K):
      for n in [0..N):
        m = moutBm + min
        C[m,n] += A[m,k]B[k,n]



Tiling

Split tensors into blocks to reduce communication costs.
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for mout in [0..M/Bm):
  for k in [0..K):
    for n in [0..N):
      for min in [0..Bm):
        m = moutBm + min
        C[m,n] += A[m,k]B[k,n]



Tiling

Split tensors into blocks to reduce communication costs.
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for mout in [0..M/Bm):
  for kout in [0..M/Bk):
    for n in [0..N):
      for min in [0..Bm):
        for kin in [0..Bk):
               m = moutBm + min
          k = koutBk + kin
          C[m,n] += A[m,k]B[k,n]



Tiling

Split tensors into blocks to reduce communication costs.
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for mout in [0..M/Bm):
  for kout in [0..K/Bk):
    for nout in [0..N/Bn):
      for min in [0..Bm):
        for kin in [0..Bk):
          for nin in [0..Bn):
                 m = moutBm + min
                 k = koutBk + kin
                 n = noutBn + nin
           C[m,n] += A[m,k]B[k,n]



Tiling

Split tensors into blocks to reduce communication costs.
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for mout in [0..M/Bm):
  for kout in [0..K/Bk):
    for nout in [0..N/Bn):
      for min in [0..Bm):
        for kin in [0..Bk):
          for nin in [0..Bn):
                 m = moutBm + min
                 k = koutBk + kin
                 n = noutBn + nin
           C[m,n] += A[m,k]B[k,n]

🤔 How do we find good tiles 



Finding Tilings…

…is difficult.
Results often for either specific hardware models (e.g. Huang et al. ISCA ’21, needs 
cost function + HW params), or reliant on expensive per-architecture autotuning (e.g. 
ATLAS).
Previous theoretical methods prove and attain asymptotic lower bounds but are 
difficult to apply in practice
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Example: cubic tiles 
are asymptotically 
optimal for matmul, but 
rectangular tiles give a 
better constant.

Image source: T. Smith et al. (Feb 2019). A Tight I/O Lower Bound for Matrix Multiplication



For Convolutions…

Even more complicated loop nest to tile: 7-D, now with scaling factors!
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for (b, c, k, w, h, r, s) in range(0,{B, C, K, W, H, R, S}):
  Out[k, h, w, b] += Image[r+wσr, s+hσh, c, b]* Filter[k, r, s, c]

 batch size        input channels        output channels        output dimensions         filter dimensions        

 strides 



Intuition: maximize tile size with optimization
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As an optimization problem…

maximize the tile size:   subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s
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bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼sbbbkbwbhbcbkb′￼rb′￼′￼r b′￼sb′￼′￼s + + ≤ M

(plus constraints on tile sizes being smaller than program sizes and some extra 
technical constraints)



maximize the tile size:   subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s
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bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼sbbbkbwbhbcbkb′￼rb′￼′￼r b′￼sb′￼′￼s + + ≤ M

Relax the problem: assume equal scratchpad sizes for each tensor tile:



maximize the tile size:   subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s
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bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼s

bbbkbwbh

bcbkb′￼rb′￼′￼r b′￼sb′￼′￼s ≤
M
3

≤
M
3

≤
M
3

Constrain 
block sizes  ≤ 

Relax the problem: assume equal scratchpad sizes for each tensor tile:



maximize the tile size:   subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s
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bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼s

bbbkbwbh

bcbkb′￼rb′￼′￼r b′￼sb′￼′￼s ≤

nonlinear 😭

M
3

≤ M
3

≤ M
3



maximize the tile size:                 subj. to:bbbcbkbwbhb′￼rb′￼′￼r b′￼sb′￼′￼s
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bbbc(bw + b′￼r)(bh + b′￼s)b′￼′￼r b′￼′￼s

bbbkbwbh

bcbkb′￼rb′￼′￼r b′￼sb′￼′￼s

logM(

logM(

logM(

logM(

≤ M
3

≤ M
3

≤ M
3

)

)

)

logM

logM

logM

)

“almost” 

Multiply out and relax again by replacing constraint with M/12 ≥ each of 4 product terms 
individually 
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maximize  subj. to , wherecT x Ax ≤ L

cT = [1 ⋯ 1]

A =

1 0 1 1 1 0 0 0 0
0 1 1 0 0 1 1 1 1
1 1 0 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1
1 1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 1 1

bT = 1 − [logM 3 logM 3 logM 12 logM 12 logM 12 logM 12]



How good are these 
tilings?
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Theoretical comparison:
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Theoretical analysis: tiled direct 
convolution requires less computation 
than:
• alternative kernels (Winograd, FFT)
• for sufficiently small problems (or 

sufficiently large memory sizes), all 
matmul based models (including im2col)

• naive, by over an order of magnitude

(Example for Resnet50 layers 1 and 2, mixed 
precision, input stride 1, output stride 2, 1k 
batches)

Spoiler alert: this is a 
communication lower bound. More on 

this in 10 minutes…



Theoretical comparison:
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Even greater impact for parallel case 
(‘smaller’ problem size)!



How well does it work 
in practice?
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35
Image source: The Deep Learning Compiler: A Comprehensive Survey (Li et. al ‘20), 
https://arxiv.org/abs/2002.03794 

Real HW is complicated

1013 
possibilities for 
mapping space 
for one layer 
alone!

Can our tilin
g be tied into this? (spoiler 

alert: yes)



HW-specific quirks

36



Benchmark platform

● Cycle-accurate simulation of a 
GEMMINI (Genc et al DAC ’21 
best paper) systolic 
accelerator connected to a a 
RISCV Rocket core

● Accurate DRAM model 
simulates on/off chip memory 
access.

37

FireSim



HW-specific quirks

🧐  Separate buffers: accumulators 
for output and scratchpad for 
inputs and weights, cannot be 
shared

🧙  Replace M/3 in constraints with 
sizes of separate buffers, and use 
sigmoidal optimization to handle 
“sum of tile < M” constraints.
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HW-specific quirks

🧐  Mixed precision: scratchpad 
is 16-bit, accumulator is 32-bit 
but writes to DRAM at 16-bit - 
cannot tile along reduction axes.

🧙  Scale memory sizes in 
constraints by 1/word size (our 
theoretical results apply to mixed 
precision - more on that in a bit)
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HW-specific quirks

🧐  Double-buffering: use half of 
buffer to work while other half is 
receiving data from memory to 
interleave computation and 
communication.

🧙  Halve memory size when 
computing tile sizes.
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Image source: U. Manchester COMP25111, https://xerxes.cs.manchester.ac.uk/comp251/kb/images/double_buffering.png

https://xerxes.cs.manchester.ac.uk/comp251/kb/images/double_buffering.png


HW-specific quirks

🧐  hot-start: begin computing 
output pixels when just enough 
inputs have been received 
(instead of waiting for whole tile 
to be loaded)

🧙  Lower-order term.
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Benchmark results

Significant perf boost and reduction in 
communication over vendor library for 
resnet conv1 (large filter, where our 
algorithm gives most benefit), smaller one 
for conv2.

Frame conv3-5 not memory-bound in 
GEMMINI library; as a result our algorithm 
(which does not account for things like 
alignment) performs slightly worse in cycles 
despite doing better in communication.

42Ongoing work: integration into compiler framework to allow HW-specific optimizations.



Can we do better? 
(No*)
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Communication Lower Bounds

Strategy: Derive new lower bounds on communication volume 
over all possible reorderings of the algorithm.

Our tiling attains the lower bound (proof in paper).

44



Proof Technique: the Loomis-Whitney Inequality

Lemma: Given a finite set  
and projections   onto each 
coordinate plane, the volume of  is 

at most .

Represent each arithmetic operation 
as a point in iteration domain  , with 

 representing array 
accesses

V ⊂ ℤ3

VA, VB, VC
V

|V | ≤ |VA | |VB | |VC |

V
VA, VB, VC
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Proof Sketch: Matmul Communication Bound

Communication lower bound for multiplying two  matrices :n × n C = AB

46

1. Split code into  segments, each doing  communicationsL M
2. Each segment has access to  elements of , and 2M A, B C
3. Accesses are projections, so L-W Inequality: Number of operations per 
segment ≤ 8M3

4. Need to do  operations, so need  segments n3 n3/ 8M3

5.  loads per segment, so need  communications M n3/ 8M

Smith et al. optimized the constant using Lagrange multipliers.



Generalizations…

● Matrix inversion, QR decomposition, LU decomposition, and other dense 
linear algebra (Christ et al. ’13)

● More complicated loop nests with affine array accesses (Demmel and 
Rusciano ’16)

● Different architectures (multilayer caches, parallel architectures)
● Sparse operations
● Mixed-precision data

Our contribution: a new generalization to CNNs including a constant factor and 
capable of handling mixed precision and parallel architectures.
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Loomis-Whitney to Hölder-Brascamp-Lieb

Let   be group homomorphisms and . Then if for all 
subgroups 

ϕj : ℤd → ℤdj s ∈ [0,1]m

H ≤ ℤd

48

Then for all nonempty finite :V ⊆ ℤd

rank(H ) ≤
m

∑
j=1

sj rank(ϕj(H ))

|V | ≤
m

∏
j=1

|ϕj(V ) |sj



Proving HBL
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● Standard proof: inductive argument involving careful decomposition along the 
kernels of the homomorphisms. 

● Tao et al, "The Brascamp-Lieb Inequalities: Finiteness, Structure and 
Extremals" proves HBL using heat flow:
○ Gaussians maximize the inequality
○ Show monotonicity in the inequality along a heat flow



Using HBL
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Using HBL



Our result 😎

Main Theorem: The number of words  communicated by a convolution which 
does  operations, uses filters of size , has strides   and runs with 
a fast memory of size   is:

X
G wF × hF σw, σh

M

52

X ≥ max { 9G
4M

− M,
2G σwσh

wFhFM
− 2M, | Image | + |Filter | + |Out |}

Attained (to within small factor) by 

our tiling. Proof by LP duality!



Parallel results

Theorem: The number of words  communicated by a convolution which does  
operations, uses filters of size , has strides   and runs on a 
distributed architecture with  processors with memory size  is:

X G
wF × hF σw, σh

P M

53

X ≥ max { 9G
4PM

− M,
2G σwσh

P wFhFM
− 2M}



Further work

● Designing hardware accelerators to 
take advantage of optimal CNN 
tilings

● Optimizations for GPUs and other 
parallel architectures

● Closing the gap between current 
CNN algorithms and lower bounds

● Integrate into compiler framework 
(EXO, Bernstein et al. PLDI ’22) to 
allow easy HW-specific 
optimizations.
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Image Source: Chen et al., 2020, Communication Lower Bounds in Convolution Accelerators,, arXiv preprint
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convolutional neural nets.
● Communication-optimal matmul: T. Hoefler, G. Kwasniewski et al. 2019, Red-

blue pebbling revisited: Near optimal parallel matrix-matrix multiplication.
● Communication-optimal matmul: T. Smith et al. (Feb 2019). A Tight I/O Lower 

Bound for Matrix Multiplication

55

http://bebop.cs.berkeley.edu
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Scan above to read our paper…
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