Stochastic Ideas for Stellarator Optimization

Mason Haberle
Courant Institute
Student Probability Seminar
October 16th, 2024

The Goal: Fusion

- Plasma containment
 - Tokamaks: axisymmetric
 - Stellarators: asymmetric
- Fusion: Deuterium + Tritium

 Helium + Neutron
- Need a super-hot, super-fast, super-controlled reaction.

[♥] NYU
COURANT

What is a plasma?

- Ionized gas: ions and electrons
- Quasineutrality
 - Electric field shielding
 - Still induced magnetic fields
 - Still induced electric fields
- Types
 - Astrophysical
 - Fusion
 - Low-temperature

KINETIC MODEL

Vlasov Equation **Gyrokinetics** Two-fluid Model Magnetohydrodynamics MHD Equilibrium

FLUID MODEL

Dynamics

- Helical trajectories
- Follow B-field lines
- Drifts
 - Curvature
 - o Grad B

 $\dot{R}_{\perp} = C_{\kappa}(B \times \kappa) + C_{\nabla}(B \times \nabla |B|) + C_{E}(E \times B)$

♥NYUCOURANT

Toroidal Confinement

- Wrap field lines into circles.
 - Problem: drifts
 - Solution: helical B-field "rotational transform"
- Tokamaks
 - Drive a toroidal current using induction
- Stellarators
 - Asymmetry to produce rotational transform

SOURCE: REPORTING BY M. MITCHELL WALDROP

♥ NYUCOURANT

Stellarator Orbits

- Goal: nested flux surfaces
- Magnetic islands
- Chaotic field lines

♥NYU

Quasisymmetry

- "Hidden symmetry" in the B-field
- Noether's theorem: perfect containment
- All the drifts cancel over toroidal orbits.

NYU

Quasisymmetry

♥NYUCOURANT

Stellarator Optimization - Stage 1

- Parameterize plasma boundary by Fourier modes
- Pick physical objectives (quasisymmetry, rotational transform, volume...)
- Steps to optimize:
 - Start with a plasma boundary
 - Solve the MHD equilibrium inside (weak formulation)
 - Compute objectives
 - Perturb to a new plasma boundary
- Usually use local optimization (BFGS)

□ Result: A good plasma boundary

NYU

COURANT

(slide shamelessly stolen from Matt Landreman)

Stellarator Optimization - Stage 2

- Parameterize coils by Fourier modes
- Pick coil constraints (length, separation, curvature...)
- Steps to optimize:
 - Start with coils
 - Solve for the B-field (Biot-Savart)
 - How parallel is B with the plasma boundary?
 - Perturb the coils
- Still local optimization

Robustness

- Stage-2 perturbations not a big deal
 - Biot-Savart integral is a compact operator
 - Small errors to plasma boundary
- Stage-1 perturbations really bad
 - Quasisymmetry and other confinement objectives are very sensitive to perturbations in the plasma boundary
 - o Nonlinear effects: chaos, turbulence onset

$$f_{QS} = (M\iota - N)(\mathbf{B} \times \nabla \psi) \cdot \nabla B$$
$$- (MG + NI)\mathbf{B} \cdot \nabla B$$

Small Coil Errors

- ☐ Small Plasma Errors
 - □ Big Loss in Confinement!

This Matters

- NCSX Princeton's stellarator: 18 complicated coils
- 1.5 mm tolerance, tons of fancy instruments used
- \$100m budget, eventually \$170m estimate

♥NYUCOURANT

CANCELLED.

Stochastic Stage-2

- Solving instabilities
 - Find more robust coils
 - Explore more of the optimization space
- 3 pronged approach
 - Stochastic coils
 - Global stochastic search
 - Local stochastic refinement

The CNT.

∜NYU

Stochastic Coils

- Add random, spatially correlated perturbations to the coils.
 - Scaled gaussian perturbations of Fourier modes
 - Random perturbations of coil angles and positions
- Evaluate expectation of objectives on the perturbed coils.
 - Stochastic objective: flux surface alignment
 - Deterministic objective: coil regularity
- Keep track of variance.

$$m{X}_P(\mathbf{x},t) := m{X}(\mathbf{x},t) + m{g}(t) \sim \mathcal{GP}(m{X}(\mathbf{x},t),\kappa_{\mathrm{per}}(t,t'))$$

 $\ell = 1.0$

$$\kappa_{\mathrm{per}}(t,t') = h \exp\left(-\frac{2\sin^2\left(\frac{|t-t'|}{2}\right)}{\ell^2}\right)$$

$$f(\mathbf{x}) = \mathbb{E}[\omega_B f_B(\mathbf{x} + \mathbf{U})] + \omega_L f_L(\mathbf{x})$$

"NYU

Global Stochastic Search

TuRBO: Bayesian Optimization.

- Find a list of approximate local minima.
- Explore more of the optimization space.
- Later, pick refined minima which are robust.

[®] NYU COURANT

Local Stochastic Refinement

SAA: Monte Carlo Sampling

$$f_{ ext{SAA}}(\mathbf{x}) = rac{1}{N_{ ext{SAA}}} \sum_{i=1}^{N_{ ext{SAA}}} f_{ ext{stoc}}(\mathbf{x} + oldsymbol{u}_i)$$

- Deterministic local search (BFGS, other methods)
- ☐ Resample and check

Adam: Stochastic Gradient

Cheap, many evaluations

♥NYUCOURANT

Expensive, less evaluations

Results: W7-X

Glas et al. tried these techniques on Wendelstein 7-X configuration.

Global search: 15 new stochastic local minima.

Local refinement: 8 successful coilsets with different engineering properties.

♥ NYUCOURANT

(a) DTuRBO-AdamCV 5mm.

(b) DTuRBO-AdamCV 10mm.

Future Work

- Apply these techniques to Stage 1 to do global search.
 - Rough objectives
 - Lots of new stellarator shapes
 - Make room for special features: divertors, controlled chaos
- Apply these techniques to coil placement and alignment.

Thank you!

